## COMP II30-Lambda Calculus

based on slides by Jeff Foster, U Maryland

## Motivation

- Commonly-used programming languages are large and complex
- ANSI C99 standard: 538 pages
- ANSI C++ standard: 714 pages
- Java language specification 2.0: 505 pages
- Not good vehicles for understanding language features or explaining program analysis


## Goal

- Develop a "core language" that has
- The essential features
- No overlapping constructs
- And none of the cruft
- Extra features of full language can be defined in terms of the core language ("syntactic sugar")
- Lambda calculus
- Standard core language for single-threaded procedural programming
- Often with added features (e.g., state); we'll see that later


## Lambda Calculus is Practical!

- An 8-bit microcontroller (Zilog Z8 encore board w/4KB SRAM)computing I + I using Church numerals in the Lambda calculus


Tim
Fraser

## Origins of Lambda Calculus

- Invented in I936 by Alonzo Church (1903-1995)
- Princeton Mathematician
- Lectures of lambda calculus published in 194I
- Also know for
- Church's Thesis
- All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
- Church's Theorem
- First order logic is undecidable


## Lambda Calculus

- Syntax:

```
e ::= x
    | \lambdax.e
        ee
```

variable
function abstraction
function application

- Only constructs in pure lambda calculus
- Functions take functions as arguments and return functions as results
- I.e., the lambda calculus supports higher-order functions


## Semantics

- To evaluate ( $\lambda x . e l$ ) e2
- Bind $x$ to e2
- Evaluate el
- Return the result of the evaluation
- This is called "beta-reduction"
- $(\lambda \times . e l)$ e2 $\rightarrow_{\beta} \mathrm{el}[\mathrm{e} 2 \mid x]$
- ( $\lambda$ x.el) e2 is called a redex
- We'll usually omit the beta


## Three Conveniences

- Syntactic sugar for local declarations
- let $x=e l$ in e2 is short for ( $\lambda x$.e2) el
- Scope of $\lambda$ extends as far to the right as possible
- $\lambda x . \lambda y . x y$ is $\lambda x .(\lambda y .(x y))$
- Function application is left-associative
- $x y z$ is ( $x y$ ) $z$


## Scoping and Parameter Passing

- Beta-reduction is not yet precise
- ( $\lambda \times . e l)$ e2 $\rightarrow$ el[e2lx]
- what if there are multiple x's?
- Example:
- let $x=a$ in
- let $y=\lambda z . x$ in
- let $x=b$ in $y x$
- which x's are bound to $a$, and which to $b$ ?


## Static (Lexical) Scope

- Just like most languages, a variable refers to the closest definition
- Make this precise using variable renaming
- The term
- let $\mathrm{x}=\mathrm{a}$ in let $\mathrm{y}=\lambda \mathrm{z} . \mathrm{x}$ in let $\mathrm{x}=\mathrm{b}$ in y x
- is "the same" as
- let $\mathrm{x}=\mathrm{a}$ in let $\mathrm{y}=\lambda \mathrm{z} \cdot \mathrm{x}$ in let $\mathrm{w}=\mathrm{b}$ in y w
- Variable names don't matter


## Free Variables and Alpha Conversion

- The set of free variables of a term is

$$
\begin{aligned}
& F V(x)=\{x\} \\
& F V(\lambda x . e)=F V(e)-\{x\} \\
& F V(e l e 2)=F V(e l) \cup F V(e 2)
\end{aligned}
$$

- A term e is closed if $\mathrm{FV}(\mathrm{e})=\varnothing$
- A variable that is not free is bound


## Alpha Conversion

- Terms are equivalent up to renaming of bound variables
- $\lambda x . e=\lambda y .(e[y \mid x])$ if $y \notin F V(e)$
- This is often called alpha conversion, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution


## Substitution

- Formal definition:
- $x[e l x]=e$
- $z[e \backslash x]=z$
if $z \neq x$
- (el e2) $[\mathrm{e} \backslash x]=(e \mid[e \backslash x] \operatorname{e2[e\backslash x]})$
- ( $\lambda$ z.el $)[\mathrm{e} \mid \mathrm{x}]=\lambda \mathrm{z} .(\mathrm{el}[\mathrm{e} \mid \mathrm{x}]) \quad$ if $\mathrm{z} \neq \mathrm{x}$ and $\mathrm{z} \notin \mathrm{FV}(\mathrm{e})$
- Example:
- $(\lambda x . y x) x={ }_{\alpha}(\lambda w . y w) x \rightarrow_{\beta} y x$
- (We won't write alpha conversion down in the future)


## A Note on Substitutions

- People write substitution many different ways
- el[e2lx]
- el[xゃe2]
- [x/e2]el
- and more...
- But they all mean the same thing


## Multi-Argument Functions

- We can't (yet) write multi-argument functions
- E.g., a function of two arguments $\lambda(x, y)$.e
- Trick: Take arguments one at a time
- $\lambda x . \lambda y . e$
- This is a function that, given argument $x$, returns a function that, given argument $y$, returns e
- $(\lambda x . \lambda y . e) a b \rightarrow(\lambda y . e[a \mid x]) b \rightarrow e[a \mid x][b \mid y]$
- This is often called Currying and can be used to represent functions with any \# of arguments


## Booleans

- true $=\lambda x . \lambda y \cdot x$
- false $=\lambda x . \lambda y . y$
- if $a$ then $b$ else $c=a b c$
- Example:
- if true then b else c $\rightarrow(\lambda x . \lambda y . x) \mathrm{b} \mathrm{c} \rightarrow(\lambda y . b) \mathrm{c} \rightarrow \mathrm{b}$
- if false then b else $\mathrm{c} \rightarrow(\lambda x . \lambda y . y) \mathrm{bc} \rightarrow(\lambda y . y) \mathrm{c} \rightarrow \mathrm{c}$


## Combinators

- Any closed term is also called a combinator
- So true and false are both combinators
- Other popular combinators
- | = $\lambda x$. $x$
- $S=\lambda x . \lambda y \cdot x$
- $K=\lambda x \cdot \lambda y . \lambda z . x z(y z)$
- Can also define calculi in terms of combinators
- E.g., the SKI calculus
- Turns out the SKI calculus is also Turing complete


## Pairs

- $(a, b)=\lambda x$.if $x$ then $a$ else $b$
- $\mathrm{fst}=\lambda p . p$ true
- snd $=\lambda p . p$ false
- Then
- fst $(a, b) \rightarrow * a$
- snd $(\mathrm{a}, \mathrm{b}) \rightarrow$ * b


## Natural Numbers (Church)

- $0=\lambda x . \lambda y . y$
- $1=\lambda x . \lambda y . x y$
- $2=\lambda x . \lambda y . x(x y)$
- i.e., $\mathrm{n}=\lambda x . \lambda \mathrm{y} .<$ apply x n times to $\mathrm{y}>$
- $\operatorname{succ}=\lambda z . \lambda x \cdot \lambda y \cdot x(z \times y)$
- iszero $=\lambda z . z$ ( $\lambda$ y.false) true


## Natural Numbers (Scott)

- $0=\lambda x . \lambda y . x$
- $1=\lambda x . \lambda y . y 0$
- 2 = $\lambda x . \lambda y . y$ I
- I.e., $\mathrm{n}=\lambda x . \lambda y . y(\mathrm{n}-\mathrm{I})$
- $\operatorname{succ}=\lambda z . \lambda x . \lambda y . y z$
- pred $=\lambda z . z 0$ ( $\lambda x . x$ )
- iszero = $\lambda z . z$ true ( $\lambda x . f a l s e)$


## A Nonderministic Semantics

$(\lambda x . e \mathrm{I}) \mathrm{e} 2 \rightarrow \mathrm{el}[\mathrm{e} 2 \mid \mathrm{x}]$



- Why are these semantics non-deterministic?


## Example

- We can apply reduction anywhere in a term
- $\lambda_{x .}(\lambda y . y) \times((\lambda z . w) x) \rightarrow \lambda x .(x((\lambda z . w) x) \rightarrow \lambda x . x w$
- $\lambda x .(\lambda y . y) \times((\lambda z . w) x) \rightarrow \lambda x .((\lambda y . y) \times w) \rightarrow \lambda x . x w$
- Does the order of evaluation matter?


## The Church-Rosser Theorem

- If $a \rightarrow^{*} b$ and $a \rightarrow^{*} c$, there there exists $d$ such that $b \rightarrow{ }^{*} d$ and $c \rightarrow * d$
- Proof: http://www.mscs.dal.ca/~selinger/papers/ lambdanotes.pdf
- Church-Rosser is also called confluence


## Normal Form

- A term is in normal form if it cannot be reduced
- Examples: $\lambda x . x, \lambda x . \lambda y . z$
- By Church-Rosser Theorem, every term reduces to at most one normal form
- Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation
- Notice that for our application rule, the argument need not be in normal form


## Beta-Equivalence

- Let ${ }_{\beta}$ be the reflexive, symmetric, and transitive closure of $\rightarrow$
- E.g., $(\lambda x . x) y \rightarrow y \leftarrow(\lambda z . \lambda w . z) y$ y, so all three are beta equivalent
- If $a={ }_{\beta} b$, then there exists $c$ such that $a \rightarrow^{*} c$ and $b \rightarrow{ }^{*} c$
- Proof: Consequence of Church-Rosser Theorem
- In particular, if $a={ }_{\beta} b$ and both are normal forms, then they are equal


## Not Every Term Has a Normal Form

- Consider
- $\Delta=\lambda x . x \times$
- Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \ldots$
- In general, self application leads to loops
- ...which is good if we want recursion


## A Fixpoint Combinator

- Also called a paradoxical combinator
- $Y=\lambda f .(\lambda x . f(x \times))(\lambda x . f(x \times))$
- Note: There are many versions of this combinator
- Then $Y F={ }_{\beta} F(Y F)$
- $Y F=(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) F$
- $\rightarrow(\lambda x . F(x \times))(\lambda x . F(x \times))$
- $\rightarrow F((\lambda x . F(x x))(\lambda x . F(x \times)))$
- $\leftarrow \mathrm{F}(\mathrm{Y} F)$


## Example

- Fact $\mathrm{n}=$ if $\mathrm{n}=0$ then $I$ else $\mathrm{n} *$ fact( $\mathrm{n}-\mathrm{I})$
- Let $G=\lambda f_{\text {. }}<$ body of factorial>
- l.e., $G=\lambda f$. $\lambda$ n.if $n=0$ then $I$ else $n^{* f(n-I) ~}$
- Y G I $={ }_{\beta} \mathrm{G}(\mathrm{YG}) \mathrm{I}$
- $=_{\beta}\left(\lambda f . \lambda n\right.$.if $n=0$ then I else $\left.n^{*} f(n-I)\right)(Y G) I$
- $=_{\beta}$ if $I=0$ then I else $I^{*}((Y G) 0)$
- $=_{\beta}$ if $I=0$ then $I$ else $I *(G(Y G) 0)$
- $=_{\beta}$ if $I=0$ then I else $I *(\lambda f . \lambda n$ nif $n=0$ then I else $n * f(n-I)(Y G) 0)$
- $=_{\beta}$ if $I=0$ then I else $I *(i f 0=0$ then $I$ else $0 *((Y G) 0)$
- ${ }_{\beta}|*|=1$


## In Other Words

- The Y combinator "unrolls" or "unfolds" its argument an infinite number of times
- $Y \mathrm{G}=\mathrm{G}(\mathrm{Y} G)=\mathrm{G}(\mathrm{G}(\mathrm{Y} \mathrm{G})=\mathrm{G}(\mathrm{G}(\mathrm{G}(\mathrm{Y} \mathrm{G})))=$...
- G needs to have a "base case" to ensure termination
- But, only works because we're call-by-name
- Different combinator(s) for call-by-value
- $Z=\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$
- Why is this a fixed-point combinator? How does its difference from $Y$ make it work for call-by-value?


## Encodings

- Encodings are fun
- They show language expressiveness
- In practice, we usually add constructs as primitives
- Much more efficient
- Much easier to perform program analysis on and avoid silly mistakes with
- E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers


## Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
- Lazy: Given ( $\lambda$ x.el) e2, do not evaluate e2 if $x$ does not "need" el
- Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
- Eager: Given ( $\lambda$ x.el) e2, always evaluate e2 fully before applying the function
- Also called call-by-value


## Lazy Operational Semantics

$$
\begin{gathered}
(\lambda x . e \mathrm{l}) \rightarrow^{\prime}(\lambda \mathrm{x.el}) \\
\frac{\mathrm{el} \rightarrow^{\prime} \lambda x . \mathrm{e} \quad \mathrm{e}[\mathrm{e} 2 \mid \mathrm{x}] \rightarrow^{\prime} \mathrm{e}^{\prime}}{\mathrm{el} \mathrm{e} 2 \rightarrow^{\prime} \mathrm{e}^{\prime}}
\end{gathered}
$$

- The rules are deterministic and big-step
- The right-hand side is reduced "all the way"
- The rules do not reduce under $\lambda$
- The rules are normalizing:
- If $a$ is closed and there is a normal form $b$ such that $a \rightarrow *$ b, then $a \rightarrow^{\prime} d$ for some d


## Eager (Big-Step) Op. Semantics

$$
\begin{gathered}
(\lambda x . e \mathrm{el}) \rightarrow^{e}(\lambda x . \mathrm{el}) \\
\mathrm{el} \rightarrow^{e} \lambda \mathrm{x} . \mathrm{e} \mathrm{e} 2 \rightarrow e \mathrm{e}^{\prime} \mathrm{e}\left[\mathrm{e}^{\prime} \mid \mathrm{x}\right] \rightarrow^{e} \mathrm{e}^{\prime \prime} \\
\hline \mathrm{el} \mathrm{e} 2 \rightarrow^{e} \mathrm{e}^{\prime \prime}
\end{gathered}
$$

- This big-step semantics is also deterministic and and does not reduce under $\lambda$
- But it is not normalizing
- Example: let $x=\Delta \Delta$ in ( $\lambda y \cdot y$ )


## Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
- Has some nice theoretical properties
- Terminates more often
- Lets you play some tricks with "infinite" objects
- Main example: Haskell
- Eager evaluation (call by value)
- Is generally easier to implement efficiently
- Blends more easily with side effects
- Main examples: Most languages (C, Java, ML, etc.)


## Functional Programming

- The $\lambda$ calculus is a prototypical functional programming language:
- Lots of higher-order functions
- No side-effects
- In practice, many functional programming languages are "impure" and permit side-effects
- But you're supposed to avoid using them


## Functional Programming Today

- Two main camps:
- Haskell - Pure, lazy functional language; no side effects
- ML (SML/NJ, OCaml) - Call-by-value, with side effects
- Still around: LISP, Scheme
- Disadvantage/advantage: No static type systems


## Influence of Functional Programming

- Functional ideas in many other languages
- Garbage collection was first designed with Lisp; most languages often rely on a GC today
- Generics in Java/C++ came from polymorphism in ML and from type classes in Haskell
- Higher-order functions and closures (used widely in Ruby; proposed extension to Java) are pervasive in all functional languages
- Many data abstraction principles of OO came from ML's module system


## Call-by-Name Example



Haskell
cond $p \times y=$ if $p$ then $x$ else $y$
loop () = loop ()
$z=$ cond True 42 (loop ())

3rd argument never used by cond, so never invoked

## Two Cool Things to Do with CBN

- Build control structures with functions

```
cond p x y = if p then x else y
```

- "Infinite" data structures

```
integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)
```

