
COMP 1130 – Lambda Calculus

based on slides by Jeff Foster, U Maryland

COMP 1130 2

• Commonly-used programming languages are
large and complex
■ ANSI C99 standard: 538 pages

■ ANSI C++ standard: 714 pages

■ Java language specification 2.0: 505 pages

• Not good vehicles for understanding language
features or explaining program analysis

Motivation

COMP 1130 3

• Develop a “core language” that has
■ The essential features

■ No overlapping constructs

■ And none of the cruft

- Extra features of full language can be defined in terms of the
core language (“syntactic sugar”)

• Lambda calculus
■ Standard core language for single-threaded procedural

programming

■ Often with added features (e.g., state); we’ll see that
later

Goal

COMP 1130

Lambda Calculus is Practical!

• An 8-bit microcontroller (Zilog Z8 encore board w/4KB
SRAM)computing 1 + 1 using Church numerals in the Lambda
calculus

4

Tim
Fraser

COMP 1130

Origins of Lambda Calculus

• Invented in 1936 by Alonzo Church (1903-1995)
■ Princeton Mathematician

■ Lectures of lambda calculus published in 1941

■ Also know for

- Church’s Thesis

- All effective computation is expressed by recursive
(decidable) functions, i.e., in the lambda calculus

- Church’s Theorem

- First order logic is undecidable

5

COMP 1130 6

• Syntax:
e ::= x variable
 | λx.e function abstraction
 | e e function application

• Only constructs in pure lambda calculus
■ Functions take functions as arguments and return

functions as results

■ I.e., the lambda calculus supports higher-order functions

Lambda Calculus

COMP 1130 7

• To evaluate (λx.e1) e2
■ Bind x to e2

■ Evaluate e1

■ Return the result of the evaluation

• This is called “beta-reduction”

■ (λx.e1) e2 →β e1[e2\x]

■ (λx.e1) e2 is called a redex

■ We’ll usually omit the beta

Semantics

COMP 1130 8

• Syntactic sugar for local declarations
■ let x = e1 in e2 is short for (λx.e2) e1

• Scope of λ extends as far to the right as possible
■ λx.λy.x y is λx.(λy.(x y))

• Function application is left-associative
■ x y z is (x y) z

Three Conveniences

COMP 1130 9

• Beta-reduction is not yet precise
■ (λx.e1) e2 → e1[e2\x]

■ what if there are multiple x’s?

• Example:
■ let x = a in

■ let y = λz.x in

■ let x = b in y x

■ which x’s are bound to a, and which to b?

Scoping and Parameter Passing

COMP 1130 10

• Just like most languages, a variable refers to the
closest definition

• Make this precise using variable renaming
■ The term

- let x = a in let y = λz.x in let x = b in y x

■ is “the same” as

- let x = a in let y = λz.x in let w = b in y w

■ Variable names don’t matter

Static (Lexical) Scope

COMP 1130 11

• The set of free variables of a term is

FV(x) = {x}
FV(λx.e) = FV(e) - {x}
FV(e1 e2) = FV(e1) ∪ FV(e2)

• A term e is closed if FV(e) = ∅

• A variable that is not free is bound

Free Variables and Alpha Conversion

COMP 1130 12

• Terms are equivalent up to renaming of bound
variables
■ λx.e = λy.(e[y\x]) if y ∊ FV(e)

• This is often called alpha conversion, and we will
use it implicitly whenever we need to avoid
capturing variables when we perform
substitution

Alpha Conversion

COMP 1130 13

• Formal definition:
■ x[e\x] = e

■ z[e\x] = z if z ≠ x

■ (e1 e2)[e\x] = (e1[e\x] e2[e\x])

■ (λz.e1)[e\x] = λz.(e1[e\x]) if z ≠ x and z ∊ FV(e)

• Example:

■ (λx.y x) x =α (λw.y w) x →β y x

■ (We won’t write alpha conversion down in the future)

Substitution

COMP 1130 14

• People write substitution many different ways
■ e1[e2\x]

■ e1[x↦e2]

■ [x/e2]e1

■ and more...

• But they all mean the same thing

A Note on Substitutions

COMP 1130 15

• We can’t (yet) write multi-argument functions
■ E.g., a function of two arguments λ(x, y).e

• Trick: Take arguments one at a time
■ λx.λy.e

■ This is a function that, given argument x, returns a
function that, given argument y, returns e

■ (λx.λy.e) a b → (λy.e[a\x]) b → e[a\x][b\y]

• This is often called Currying and can be used to
represent functions with any # of arguments

Multi-Argument Functions

COMP 1130 16

• true = λx.λy.x

• false = λx.λy.y

• if a then b else c = a b c

• Example:
■ if true then b else c → (λx.λy.x) b c →(λy.b) c → b

■ if false then b else c → (λx.λy.y) b c →(λy.y) c → c

Booleans

COMP 1130 17

• Any closed term is also called a combinator
■ So true and false are both combinators

• Other popular combinators
■ I = λx.x

■ S = λx.λy.x

■ K = λx.λy.λz.x z (y z)

■ Can also define calculi in terms of combinators

- E.g., the SKI calculus

- Turns out the SKI calculus is also Turing complete

Combinators

COMP 1130 18

• (a, b) = λx.if x then a else b

• fst = λp.p true

• snd = λp.p false

• Then
■ fst (a, b) →* a

■ snd (a, b) →* b

Pairs

COMP 1130 19

• 0 = λx.λy.y

• 1 = λx.λy.x y

• 2 = λx.λy.x(x y)

• i.e., n = λx.λy.<apply x n times to y>

• succ = λz.λx.λy.x(z x y)

• iszero = λz.z (λy.false) true

Natural Numbers (Church)

COMP 1130 20

• 0 = λx.λy.x

• 1 = λx.λy.y 0

• 2 = λx.λy.y 1

• I.e., n = λx.λy.y (n-1)

• succ = λz.λx.λy.y z

• pred = λz.z 0 (λx.x)

• iszero = λz.z true (λx.false)

Natural Numbers (Scott)

COMP 1130 21

A Nonderministic Semantics

(λx.e1) e2 → e1[e2\x]

e → e′
(λx.e) → (λx.e′)

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
e1 e2 → e1 e2′

■ Why are these semantics non-deterministic?

COMP 1130 22

• We can apply reduction anywhere in a term
■ λx.(λy.y) x ((λz.w) x) → λx.(x ((λz.w) x) → λx.x w

■ λx.(λy.y) x ((λz.w) x) → λx.((λy.y) x w) → λx.x w

• Does the order of evaluation matter?

Example

COMP 1130 23

• If a →* b and a →* c, there there exists d such
that b →* d and c →* d
■ Proof: http://www.mscs.dal.ca/~selinger/papers/

lambdanotes.pdf

• Church-Rosser is also called confluence

The Church-Rosser Theorem

COMP 1130 24

• A term is in normal form if it cannot be reduced
■ Examples: λx.x, λx.λy.z

• By Church-Rosser Theorem, every term reduces
to at most one normal form
■ Warning: All of this applies only to the pure lambda

calculus with non-deterministic evaluation

• Notice that for our application rule, the
argument need not be in normal form

Normal Form

COMP 1130 25

• Let =β be the reflexive, symmetric, and transitive

closure of →
■ E.g., (λx.x) y → y ← (λz.λw.z) y y, so all three are beta

equivalent

• If a =β b, then there exists c such that a →* c
and b →* c
■ Proof: Consequence of Church-Rosser Theorem

• In particular, if a =β b and both are normal
forms, then they are equal

Beta-Equivalence

COMP 1130 26

• Consider
■ Δ = λx.x x

■ Then Δ Δ → Δ Δ →···

• In general, self application leads to loops
■ ...which is good if we want recursion

Not Every Term Has a Normal Form

COMP 1130 27

• Also called a paradoxical combinator
■ Y = λf.(λx.f (x x)) (λx.f (x x))

■ Note: There are many versions of this combinator

• Then Y F =β F (Y F)

■ Y F = (λf.(λx.f (x x)) (λx.f (x x))) F

■ → (λx.F (x x)) (λx.F (x x))

■ → F ((λx.F (x x)) (λx.F (x x)))

■ ← F (Y F)

A Fixpoint Combinator

COMP 1130 28

• Fact n = if n = 0 then 1 else n * fact(n-1)

• Let G = λf.<body of factorial>
■ I.e., G = λf. λn.if n = 0 then 1 else n*f(n-1)

• Y G 1 =β G (YG) 1

■ =β (λf.λn.if n = 0 then 1 else n*f(n-1)) (Y G) 1

■ =β if 1 = 0 then 1 else 1*((Y G) 0)

■ =β if 1 = 0 then 1 else 1*(G (Y G) 0)

■ =β if 1 = 0 then 1 else 1*(λf.λn.if n = 0 then 1 else n*f(n-1) (Y G) 0)

■ =β if 1 = 0 then 1 else 1*(if 0 = 0 then 1 else 0*((Y G) 0)

■ =β 1*1 = 1

Example

COMP 1130 29

• The Y combinator “unrolls” or “unfolds” its
argument an infinite number of times
■ Y G = G (Y G) = G (G (Y G) = G (G (G (Y G))) = ...

■ G needs to have a “base case” to ensure termination

• But, only works because we’re call-by-name
■ Different combinator(s) for call-by-value

- Z = λf.(λx.f (λy. x x y)) (λx.f (λy. x x y))

- Why is this a fixed-point combinator? How does its difference
from Y make it work for call-by-value?

In Other Words

COMP 1130 30

• Encodings are fun

• They show language expressiveness

• In practice, we usually add constructs as
primitives
■ Much more efficient

■ Much easier to perform program analysis on and avoid
silly mistakes with

- E.g., our encodings of true and 0 are exactly the same, but we
may want to forbid mixing booleans and integers

Encodings

COMP 1130 31

• Our non-deterministic reduction rule is fine for
theory, but awkward to implement

• Two deterministic strategies:
■ Lazy: Given (λx.e1) e2, do not evaluate e2 if x does

not “need” e1

- Also called left-most, call-by-name, call-by-need, applicative,
normal-order (with slightly different meanings)

■ Eager: Given (λx.e1) e2, always evaluate e2 fully before
applying the function

- Also called call-by-value

Lazy vs. Eager Evaluation

COMP 1130 32

• The rules are deterministic and big-step
■ The right-hand side is reduced “all the way”

• The rules do not reduce under λ
• The rules are normalizing:
■ If a is closed and there is a normal form b such that

a →* b, then a →l d for some d

Lazy Operational Semantics

(λx.e1) →l (λx.e1)

e1 →l λx.e e[e2\x] →l e′
e1 e2 →l e′

COMP 1130 33

• This big-step semantics is also deterministic and
and does not reduce under λ

• But it is not normalizing
■ Example: let x = Δ Δ in (λy.y)

Eager (Big-Step) Op. Semantics

(λx.e1) →e (λx.e1)

e1 →e λx.e e2 →e e′ e[e′\x] →e e′′
e1 e2 →e e′′

COMP 1130 34

• Lazy evaluation (call by name, call by need)
■ Has some nice theoretical properties
■ Terminates more often
■ Lets you play some tricks with “infinite” objects
■ Main example: Haskell

• Eager evaluation (call by value)
■ Is generally easier to implement efficiently
■ Blends more easily with side effects
■ Main examples: Most languages (C, Java, ML, etc.)

Lazy vs. Eager in Practice

COMP 1130 35

• The λ calculus is a prototypical functional
programming language:
■ Lots of higher-order functions

■ No side-effects

• In practice, many functional programming
languages are “impure” and permit side-effects
■ But you’re supposed to avoid using them

Functional Programming

COMP 1130 36

• Two main camps:
■ Haskell – Pure, lazy functional language; no side effects

■ ML (SML/NJ, OCaml) – Call-by-value, with side effects

• Still around: LISP, Scheme
■ Disadvantage/advantage: No static type systems

Functional Programming Today

COMP 1130
37

Influence of Functional Programming

•Functional ideas in many other languages
■ Garbage collection was first designed with Lisp; most

languages often rely on a GC today

■ Generics in Java/C++ came from polymorphism in ML
and from type classes in Haskell

■ Higher-order functions and closures (used widely in
Ruby; proposed extension to Java) are pervasive in all
functional languages

■ Many data abstraction principles of OO came from
ML’s module system

■ …

COMP 1130

Call-by-Name Example

38

OCaml
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ())

Haskell
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ())

infinite loop at call

3rd argument never used by cond, so
never invoked

COMP 1130

Two Cool Things to Do with CBN

• Build control structures with functions

• “Infinite” data structures

39

cond p x y = if p then x else y

integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)

