COMP I I 30 – Lambda Calculus

based on slides by Jeff Foster, U Maryland

Motivation

- Commonly-used programming languages are large and complex
 - ANSI C99 standard: 538 pages
 - ANSI C++ standard: 714 pages
 - Java language specification 2.0: 505 pages
- Not good vehicles for understanding language features or explaining program analysis

Goal

- Develop a "core language" that has
 - The essential features
 - No overlapping constructs
 - And none of the cruft
 - Extra features of full language can be defined in terms of the core language ("syntactic sugar")
- Lambda calculus
 - Standard core language for single-threaded procedural programming
 - Often with added features (e.g., state); we'll see that later

Lambda Calculus is Practical!

 An 8-bit microcontroller (Zilog Z8 encore board w/4KB SRAM)computing I + I using Church numerals in the Lambda calculus

Tim Fraser

Origins of Lambda Calculus

- Invented in 1936 by Alonzo Church (1903-1995)
 - Princeton Mathematician
 - Lectures of lambda calculus published in 1941
 - Also know for
 - Church's Thesis
 - All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
 - Church's Theorem
 - First order logic is undecidable

Lambda Calculus

• Syntax:

e ::= x	variable
λx.e	function abstraction
e e	function application

- Only constructs in pure lambda calculus
 - Functions take functions as arguments and return functions as results
 - I.e., the lambda calculus supports higher-order functions

Semantics

- To evaluate (λx.el) e2
 - Bind x to e2
 - Evaluate el
 - Return the result of the evaluation
- This is called "beta-reduction"
 - $(\lambda x.el) e2 \rightarrow_{\beta} el[e2 x]$
 - $(\lambda x.el)$ e2 is called a redex
 - We'll usually omit the beta

Three Conveniences

- Syntactic sugar for local declarations
 - let x = el in e2 is short for ($\lambda x.e2$) el
- Scope of λ extends as far to the right as possible
 λx.λy.x y is λx.(λy.(x y))
- Function application is left-associative
 x y z is (x y) z

Scoping and Parameter Passing

- Beta-reduction is not yet precise
 - $(\lambda x.el) e2 \rightarrow el[e2 x]$
 - what if there are multiple x's?
- Example:
 - let x = a in
 - let $y = \lambda z x$ in
 - let x = b in y x
 - which x's are bound to a, and which to b?

Static (Lexical) Scope

• Just like most languages, a variable refers to the closest definition

- Make this precise using variable renaming
 - The term
 - let x = a in let $y = \lambda z \cdot x$ in let x = b in $y \cdot x$
 - is "the same" as
 - let x = a in let y = $\lambda z.x$ in let w = b in y w
 - Variable names don't matter

Free Variables and Alpha Conversion

• The set of free variables of a term is

```
FV(x) = \{x\}

FV(\lambda x.e) = FV(e) - \{x\}

FV(el \ e2) = FV(el) \cup FV(e2)
```

- A term e is closed if $FV(e) = \emptyset$
- A variable that is not free is bound

Alpha Conversion

- Terms are equivalent up to renaming of bound variables
 - $\lambda x.e = \lambda y.(e[y|x])$ if $y \notin FV(e)$
- This is often called *alpha conversion*, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution

Substitution

- Formal definition:
 - x[e\x] = e
 - z[e|x] = z if $z \neq x$
 - (el e2)[e\x] = (el[e\x] e2[e\x])
 - $(\lambda z.el)[e|x] = \lambda z.(el[e|x])$ if $z \neq x$ and $z \notin FV(e)$

- Example:
 - $(\lambda x.y x) x =_{\alpha} (\lambda w.y w) x \rightarrow_{\beta} y x$
 - (We won't write alpha conversion down in the future)

A Note on Substitutions

- People write substitution many different ways
 - el[e2\x]
 - el[x → e2]
 - [x/e2]el
 - and more...
- But they all mean the same thing

Multi-Argument Functions

- We can't (yet) write multi-argument functions
 - E.g., a function of two arguments $\lambda(x, y)$.e
- Trick: Take arguments one at a time
 - λx.λy.e
 - This is a function that, given argument x, returns a function that, given argument y, returns e
 - $(\lambda x.\lambda y.e) a b \rightarrow (\lambda y.e[a x]) b \rightarrow e[a x][b y]$
- This is often called *Currying* and can be used to represent functions with any # of arguments

Booleans

- true = $\lambda x.\lambda y.x$
- false = $\lambda x.\lambda y.y$
- if a then b else c = a b c

- Example:
 - if true then b else $c \rightarrow (\lambda x.\lambda y.x)$ b $c \rightarrow (\lambda y.b)$ $c \rightarrow b$
 - if false then b else $c \rightarrow (\lambda x.\lambda y.y)$ b $c \rightarrow (\lambda y.y)$ $c \rightarrow c$

Combinators

- Any closed term is also called a combinator
 - So true and false are both combinators
- Other popular combinators
 - | = λx.x
 - S = λx.λy.x
 - K = λx.λy.λz.x z (y z)
 - Can also define calculi in terms of combinators
 - E.g., the SKI calculus

- Turns out the SKI calculus is also Turing complete

Pairs

- (a, b) = $\lambda x.if x$ then a else b
- fst = $\lambda p.p$ true
- snd = $\lambda p.p$ false

- Then
 - fst (a, b) →* a
 - snd (a, b) →* b

Natural Numbers (Church)

- $0 = \lambda x. \lambda y. y$
- $I = \lambda x. \lambda y. x y$
- $2 = \lambda x \cdot \lambda y \cdot x (x y)$
- i.e., $n = \lambda x \cdot \lambda y \cdot \langle apply x n \rangle$ times to $y > \langle apply x n \rangle$

- succ = $\lambda z . \lambda x . \lambda y . x (z \times y)$
- iszero = $\lambda z.z$ ($\lambda y.false$) true

Natural Numbers (Scott)

- $0 = \lambda x. \lambda y. x$
- $I = \lambda x. \lambda y. y 0$
- $2 = \lambda x . \lambda y . y$ |
- I.e., $n = \lambda x.\lambda y.y$ (n-1)
- succ = $\lambda z . \lambda x . \lambda y . y z$
- pred = $\lambda z.z 0 (\lambda x.x)$
- iszero = $\lambda z.z$ true ($\lambda x.false$)

A Nonderministic Semantics

Why are these semantics non-deterministic?

Example

- We can apply reduction anywhere in a term
 - $\lambda x.(\lambda y.y) x ((\lambda z.w) x) \rightarrow \lambda x.(x ((\lambda z.w) x) \rightarrow \lambda x.x w$
 - $\lambda x.(\lambda y.y) \times ((\lambda z.w) \times) \rightarrow \lambda x.((\lambda y.y) \times w) \rightarrow \lambda x.x w$
- Does the order of evaluation matter?

The Church-Rosser Theorem

- If $a \rightarrow * b$ and $a \rightarrow * c$, there there exists d such that $b \rightarrow * d$ and $c \rightarrow * d$
 - Proof: <u>http://www.mscs.dal.ca/~selinger/papers/</u> <u>lambdanotes.pdf</u>

• Church-Rosser is also called confluence

Normal Form

- A term is in *normal form* if it cannot be reduced
 - Examples: λx.x, λx.λy.z
- By Church-Rosser Theorem, every term reduces to at most one normal form
 - Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation
- Notice that for our application rule, the argument need not be in normal form

- Let $=_{\beta}$ be the reflexive, symmetric, and transitive closure of \rightarrow
 - E.g., (λx.x) y → y ← (λz.λw.z) y y, so all three are beta equivalent
- If $a =_{\beta} b$, then there exists c such that $a \rightarrow * c$ and $b \rightarrow * c$
 - Proof: Consequence of Church-Rosser Theorem
- In particular, if $a =_{\beta} b$ and both are normal forms, then they are equal

Not Every Term Has a Normal Form

- Consider
 - $\Delta = \lambda x.x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

- In general, self application leads to loops
 - ...which is good if we want recursion

A Fixpoint Combinator

- Also called a paradoxical combinator
 - $Y = \lambda f.(\lambda x.f(x x)) (\lambda x.f(x x))$
 - Note: There are many versions of this combinator
- Then $Y F =_{\beta} F (Y F)$
 - Y F = $(\lambda f.(\lambda x.f(x x)) (\lambda x.f(x x)))$ F
 - \rightarrow (λ x.F (x x)) (λ x.F (x x))
 - \rightarrow F ((λx .F (x x)) (λx .F (x x)))
 - ← F (Y F)

Example

- Fact n = if n = 0 then I else n * fact(n-I)
- Let G = λf .<body of factorial>
 - I.e., $G = \lambda f. \lambda n.if n = 0$ then I else $n^*f(n-1)$
- Y G I = $_{\beta}$ G (YG) I
 - = $=_{\beta} (\lambda f. \lambda n. if n = 0 \text{ then } I \text{ else } n^* f(n-I)) (Y G) I$
 - =_B if I = 0 then I else I*((Y G) 0)
 - $=_{\beta}$ if I = 0 then I else I*(G (Y G) 0)
 - =₆ if I = 0 then I else I*(λf . λn .if n = 0 then I else n*f(n-I) (Y G) 0)
 - $=_{\beta}$ if I = 0 then I else I*(if 0 = 0 then I else 0*((Y G) 0) • $=_{\beta}$ I*I = I

- The Y combinator "unrolls" or "unfolds" its argument an infinite number of times
 - Y G = G (Y G) = G (G (Y G) = G (G (G (Y G))) = ...
 - G needs to have a "base case" to ensure termination
- But, only works because we're call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f.(\lambda x.f(\lambda y. x x y)) (\lambda x.f(\lambda y. x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y make it work for call-by-value?

Encodings

- Encodings are fun
- They show language expressiveness

- In practice, we usually add constructs as primitives
 - Much more efficient
 - Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers

Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - Lazy: Given (λx.el) e2, do not evaluate e2 if x does not "need" el
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
 - Eager: Given (λx.el) e2, always evaluate e2 fully before applying the function
 - Also called call-by-value

Lazy Operational Semantics

$$(\lambda x.el) \rightarrow (\lambda x.el)$$

el
$$\rightarrow$$
 / $\lambda x.e$ e[e2\x] \rightarrow / e'
el e2 \rightarrow / e'

- The rules are deterministic and big-step
 - The right-hand side is reduced "all the way"
- The rules do not reduce under λ
- The rules are normalizing:
- If a is closed and there is a normal form b such that $a \rightarrow * b$, then $a \rightarrow ' d$ for some d

Eager (Big-Step) Op. Semantics

$$(\lambda x.el) \rightarrow^{e} (\lambda x.el)$$

- This big-step semantics is also deterministic and and does not reduce under λ
- But it is not normalizing
 - Example: let $x = \Delta \Delta$ in $(\lambda y.y)$

Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with "infinite" objects
 - Main example: Haskell
- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)

Functional Programming

- The λ calculus is a prototypical functional programming language:
 - Lots of higher-order functions
 - No side-effects

- In practice, many functional programming languages are "impure" and permit side-effects
 - But you're supposed to avoid using them

Functional Programming Today

- Two main camps:
 - Haskell Pure, lazy functional language; no side effects
 - ML (SML/NJ, OCaml) Call-by-value, with side effects
- Still around: LISP, Scheme
 - Disadvantage/advantage: No static type systems

Influence of Functional Programming

- Functional ideas in many other languages
 - Garbage collection was first designed with Lisp; most languages often rely on a GC today
 - Generics in Java/C++ came from polymorphism in ML and from type classes in Haskell
 - Higher-order functions and closures (used widely in Ruby; proposed extension to Java) are pervasive in all functional languages
 - Many data abstraction principles of OO came from ML's module system

Call-by-Name Example

Two Cool Things to Do with CBN

• Build control structures with functions

cond p x y = if p then x else y

• "Infinite" data structures

```
integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)
```